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ABSTRACT 

In this paper, for some of the results which were announced in [3l, we define, for 
every convex polytope, a function generalizing the permanent; we study the 
growth of the function, the behavior of its minimum and determine a lower 
bound for the minimum. Some of the results are new even for the permanent. 
A related function whose properties are strongly linked to the permanent is 
also studied, and will be described in greater detail in a sequel to this paper. 

For  any set T in a real affine space A, we denote by T the least affine subspace 

containing T. Let K be a non-empty convex polytope in A. By K we denote the 

interior of  K with respect to a(. We shall also speak of  the relative boundary 

of  K, which is defined with respect to J(. The dimension of K shall be the di- 

mension o f / L  

Let S = {A1, A 2 , ' " ,  An} be a collection of (not necessarily distinct) affine func- 

tions on A. We say that S is a determining set for K if K = { x E  1~lA~(x ) > 0Vi}. 

I f  S is a determining set for K ,  and we have for two points x and y in / (  that 

Ai(x) = A~(y) for all i, then necessarily x = y. For  let u ~ K, then for any scalar 2, 

Ai(u + 2(y - x)) = A,(u) + 2(At(y ) - At(x)) = Ai(u) > O. 

Since K is compact ,  we must have y = x. 

Now let g be a finite set of  points in A, let K be the convex hull of  g, and let S 

be a determining set for K. g contains, then, the set g '  of  extreme points of  K. 

For  the sake of  convenience, we are going to assume throughout this paper that 

no At vanishes identically on K. For  any subset {ix, i2, "", iv} of  {1,2, .. . ,n}, we 

define 
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F(il, i2 , ' " ,  iv) = {x e K IAi(x ) = O, i = il, i2 , '" ,  iv} 

and call it the flat determined by {il, i2 , ' " ,  iv}. Every flat F is a convex poly- 

hedron whose set of  extreme points is precisely F N ~f', and S is also a deter- 

mining set for F. The flat F = F(ii,  i2,'",iv) is said to be regularly defined if  

there exists x e F  such that Ai (x )>  0 for i r  i l , i , , ' " , i v .  Clearly every non- 

empty flat may be regularly defined. As is usual, a flat of codimension one in K 

will be called a face of K. 

Let R~ be the closed first 2"-gant in R", R~. its interior. R~ is a multiplicative 

semigroup under multiplication per coordinate, and the prcduct of u and v will 

simply be denoted uv. We define additionally u v ~, v~ v~ 0 o 1. I f  a is a //1 //2 Un , 

scalar greater than or equal to zero, we define u" = (u~, u2, ~ "-, u~). If  u e R~., we 

define u ~ as above for any scalar a. Also for ~ _> 0 and u e Rg, we define 

(~u = (aut, 0:,2, ..., a""). 

Returning now to the convex polytope K, we construct an affine map A: K ~ Rg 

by setting A(x) = (Al(x),A2(x), . . . ,A,(x)). Let c be a strictly positive function 

on r For  y e R~, define 

Q(y) = Z c(e)y ate) 
eer 

and for x e K, define 

P(x)  = O(A(x)). 

P(x) is strictly positive, and we will study its minimum value, which may be 

related in fact to the permanent conjecture [5]. For if  we let K be the set D, of 

k x k doubly stochastic matrices sitting in the affme space R k', take for S the set 

of coordinate functions, for 8 the permutation matrices, and c ---- 1, then P(x) is 

the permanent of x, perm(x) = ~x*, where the summation is over the k x k 

permutation matrices. 

Returning again to the general case, we define a map q: R~ ~ K, by setting 

1 ~, c(e)ya~e)e, q ( Y ) -  Q(y) e ~  

well defined for y such that Q(y) 4= O, and a map h: K ~ K, by setting 

h(x) = q(A(x)). 

A few remarks about the map h are in order. Note that if Ai(x)=0, then trivially 

Ai(h(x)) = 0. But the converse is also true. For suppose Ai(h(x)) = 0. Then if 
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k for e ~ ~f, we have A~(e) 4= O, we must have A(x) At~ = 0. Now write x = ~1~ = 1 p,ev 

as a proper (p~ > 0 Vu) convex combination of extreme points. Since A(x) 

= Y, pvA(e~), we have A(x) ~(~0 # 0 for v = 1,2, . . . ,k ,  and so we must have 

Ai(ev) = 0, implying Ai(x) = 0. All this means, of course, that h maps the relative 

interior of any flat into itself. From this it follows that h fixes the extreme points 

of K, which is immediate from inspection also. 

Our first main result is Theorem 1. 

TI-IEOItl!M 1. h is a bijection. 

The proof  will be composed of  a series of  lemmas. 

LEMSiA 2. h is onto. 

Let F = F(r + I, r + 2,.. . ,  n) be a regularly defined flat, and let v and x belong 

to the relative interior of  F. Consider the function of  x given by 

~ ( x ) -  v(x) 
A(x)Ato " 

As x approaches the relative boundary of  F, G(x) goes to plus infinity. Hence 

G(x) has a minimum at a point Xo e f .  Put w = h(xo), x = Xo + t(w - v), and 

consider the function 

a(O = ~ ( x )  = G(xo + t (w - v)) 

defined for sufficiently small t and having a minimum at t = 0. A simple calculation 

shows that (d/dt)Ai(x) = A i ( w ) -  Ai(v). We may now write logg(t) = logP(x) 

- ~,[= t Ai(o) log Ai(x). Hence: 

0 = (0) = P(xo) . ~  s c(e)A(x~176 i-~ 1 A,tXo) ( A i ( w ) -  A(v))  

i = l  i \  O/ 

= Ai(xo) bai(w) -- Ai(v)) - ~ .~Axo) (Ai(w) - Ai(v)) 
i = 1  i r - I  

= ~ (A~(w)-A' (v) )2  

~=1 &(Xo) 

from which it follows that A,(w) = &(v)  for all i, which implies that h(xo) = o. 

Since any v e K belongs to the relative interior of  some flat, the proof  is completed. 

Let # be a not identically zero Borel measure of compact support in R '~ equipped 

with the usual scalar product ( �9  �9 ) .  and put 
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L(x)  = f exp (x, S) p(ds), 

defined and differentiable for all x �9 R m [4]. 

LEMMA 3. aZlogL(x)/OxiOxj is positive semi-definite and 

convex function. 

As a straightforward computation shows: 

0 2 logL(x) 0 2 
L2(x) Z -----=I fir j i.j OXiOXj = L2(X) O--ffl~ + 20  (2 = O) 

J = 1/2 ( r , t -  s ) 2 e x p ( x , s +  t)  p(ds)p(dt) 

for any r ~ R",  which proves the lemma. 

L~gMA 4. Suppose grad log L(x)  = grad log L(y). Then ( y - x ,  s )  

= ( y  - x , t )  for  any pair of points t and s in the support ofl~. 

Let r � 9  m, 2 e R .  As the last lemma shows, 

d logL(x + 20 (gradlogL(x + 2r), r )  = ~ 

is a non-decreasing function of 2. Put r = y - x, and compare at 2 = 0 and 

2 = 1. Thus (gradlogL(y) ,  y -  x ) >  (gradlogL(x),  y -  x).  Since we have 

equality in the last inequality, we must have that (grad log L(x + 20,  r )  is con- 

stant for 0 < 2 < 1. Hence 

d 2 
0 = ~-~logL(x + 2r) (2 = 0) 

if = -~ ( y  - x, t - s ) 2 e x p ( x ,  s + t )#(ds)p(dt) .  

Since the integrand is non-negative, the conclusion of the lemma follows. 

Now let y e R~. The support of y is defined to be the set of 1 < i < n such 

that y~ r 0. Let F = F(r + 1, r + 2,. . . ,  n) be a regularly defined flat. y is said to 

have F-like support if Ya,Y2, '" ,Y ,  r O, and Y,+ a, Y,+ 2, "", Y, = 0. This is the 

same as saying that y has the same support as A(x) for some x �9 _F. Clearly, if 

the support of y contains the support of A(x)  for any x �9 K, then Q(y) +- 0. 

Let y have F-l ike support and put u = (log y l , log y2, ...,log y,), u e R ' .  

Define B(e) = (Al(e),A2(e),. . . ,  A,(e)) and put 

L(u) = Z c(e) exp (u ,B(e)) .  
e e 8 c ~ F  

Notice that L(u) is the Laplace transform of a finitely supported measure, namel 
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one having mass c(e) at the point B(e) for all e e o* n F. Observe as well that 

L(u) = Q(y), and that  (gradlog L(u))j = Aj(q(y)), for j = 1, 2, . . . ,  r. 

LEMMA 5. Let y and y '  have F-like support, and suppose q(y) = q(y'). 

Then there exists ~ ~ R r such that ~ =  1 ~iAi(x) = d(constant ) for  all x ~ F, and 
fit i I such that yf = e Yi, i = 1 ,2 , . . . , r .  

Construct u and u' related to y and y '  as above. Then we have grad log L(u) 

= grad log L(u '). By Lemma 4, it follows that (u  - u ' , B ( e ) )  = (u  - u t ,  B ( f ) )  

for any e and f ~6 ~ n F;  or ~,[=llog(yJy'~)Ai(e) = d. Put ai = log(ydy~). Then 

~,~= 1 cqAi(e) = d for all e ~ r ~ F, and since every x ~ F may be written as a 

convex combination of  such e, the lemma follows. 

Notice that if y and y '  are related as concluded in the lemma, then necessarily 

q(y) = q(y'). 

LEMMA 6. h is injective. 

For  let x and x '  be points in _F such that h(x) = h(x'), that is, q(A(x)) = q(A(x')). 

Then there exists ~ E R ~ satisfying the conclusions of  Lemma 5, that is, 

& ( x )  = ~' ' = E = e A,(x ), i 1, 2,.. . ,  r, and aiA~(y ) d 
i = l  

for all y E F. Put a = ~ .  = 1A~(x) and a t = ~ = x Ai(x'). Then 

a ~ a t a t 
i = 1  i = 1  i = 1  

using convexity of  the exponential function. Next, reverse the roles of x and x ' ,  

replacing a and d by their negatives, to obtain a'/a ~ e -d/a. I n  the case d = 0, 

compare the two inequalities to obtain a = a ' .  But then the inequality a/a' ~ e d/a' 

is an equality, and since the exponential function is strictly convex, we must 

have that ~i is a constant independent of  i, and since d = 0 = ~i~iAi(y), ~i is in 

fact always zero. 

In case d > 0, multiply the two inequalities to obtain 1 ~_ exp(d(1/a '  - l/a)), 

which implies a '  ~ a. But then 1 ~ a/a' ~ e d/a', which is a contradiction. The 

case d < 0 is settled symmetrically. 

So we must have d = 0, ~i =0 ,  and then Ai(x ) = Ai(x t) for i = 1 ,2 , - . . , r ,  but 

trivially for i = r + 1,r  + 2, . . . ,n,  implying x -- x ' .  

Since h: K --, K is a bijection, it has an inverse which we denote by 1. l is 

continuous by a well-known theorem on invertible maps of compact Hausdorff  

spaces. Actually much more is true. 



80 O.S. ROTHAUS Israel J. Math., 

THEOREM 7. Let F be a f lat  (possibly K). Then l is a real analytic map of 

F_ to itself. 

Since h is a real analytic map c f F  to itself, I will be real analytic at points where 

the differential of  h is non-singular. So let F = F(r + 1, r + 2, ..., n)be regularly 

defined, x E_F and v eF.  Then the differential of  h at the point x in the direction 

v - x of  the tangent space to F at x is given by (d/dt)h(x + t(v - x)) (t = 0), and 

we must show this is zero only for v = x. A routine computation shows that the 

above is equal to 

1 ?c (e )A(x )a ,e , {~  1 A,(eA.~(A,(v)_Ai(x))}e_h(x)~ Ai(h(x)) 
e ( x )  e "= i = 1 Ai(x-------~ ( A i ( v )  - A i ( x ) ) "  

Suppose the above expression is zero. Noting that (liP(x)) Z ~ ~ t c(e)A(x) a(*)A (e) 

= A (h(x)), we obtain that 

1 { } 
P(x) X c(e)A(x) a(~) ~ Ai(e) .~,~ ,=, Aii(-x) (Ai(v) - Ai(x)) Aj(e) 

- Ai(h(x)) 
A~(h(x)) 

i= I A~l(x) . . . .  I, A i ( V  ) - -  A i ( x ) )  = 0 for any j .  

Let s ~ R'  be point whose ith coordinate is (Ai(v) - A~(x))/Ai(x). Then from the 

above we obtain further 

1 
P(x) ~-" c(e)A(x)a(e) ~, A~(e)Aj(e)s:j 

e ~8 1 <i , j<r  

-- ~, A~(h(x))Aj(h(x))s:j = O. 
l<=i,j<r 

Now put u = (logAl(x), logA2(x), ' . . , logA,(x)),  and form the function L(u) 

as in Lemma 4. Another routine computation shows that the expression on the 

left immediately above is precisely (d2/d22)log L(u + ks) (2 = 0). But the vanishing 

of  the last expression implies, referring to Lemma 3, that (s, B(e)) = d (constant) 

for all e ~ 8 C~ F, or ~-= i [(Ai(v) - Ai(x))/A~(x)] A~(e) = d, from which we 

obtain E~ = 1 [(A~(v)- A~(x))/A~(x)] A~(w) = d for any w ~ F. On comparing for 

w = v and for w = x, we see that ~' i=t[(Ai(v)-  A,(x))2[A~(x)] = 0, which 

implies that v = x. 

We can also obtain a simple inequality for P(x). 

LEMMA 8. For all x and v ~ K, e(x)/A(x) a(O > P(l(v))/A(l(v)) a(v). 

First, let x and v belong to _K. Referring to Lemma 2, we have that the minimum 
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(as a function of x) of P(x)/A(x) Aft) is achieved uniquely at point x = l(v). Hence 

in this case A(x) atv) [P(x) < A(l(v))acv)]P(l(v)). Since x ~ _K, the left-hand side of 

the above is continuous in v. It is easy to see that A(v)'qh(v))/P(v) is continuous 

in v, so the right-hand side is likewise continuous. Thus the inequality holds for 

any v ~ K provided x ~ _K. But now the left-hand side is a continuous function of 

x ~ K, so the inequality holds generally. 

Under certain further assumptions, the map h has an additional remarkable 

property. The function Q(y) is homogeneous of degree d if ]~i"= iAi(e) = d for all 

e s g ,  which is same as saying Z~=lAi(x) = d for all x s  ~. If, for example, 

K has a non-empty interior with respect to A, and A is equipped with a Euclidean 

metric, then since the sum of the inner normals to the faces of K with lengths 

equal to the area of the faces is zero, homogeneity can be achieved by appropriate 

choice of S. For the remainder of this paper, we will assume Q is homogeneous 

of degree d. In this case we have Theorem 9. 

THEOREM 9. P(h(x)) > P(x), with equality only for h(x) = x. 

The proof will follow from Lemma 10. 

L~MMA 10. Let F(x) be a positive, twice continuously differentiable function 

on R"+ such that logF(e x) is a convex function of x. Then for u and v~R"+, 
u orad F(u)/F(u) 

F(uv)/F(u) = > v 

Put G(x) = log F(eX). Then by Taylor's theorem 

G(x + y) = G(x) + grad G(x),y) + 1  
",j 

02G 
ax ax-----~. (x + Oy)y~yj 

for some 0 < 0 < 1. The third term on right above is non-negative since G is 

convex. Hence G(x + y ) >  G(x)+(grad G(x),y). Let u = e x, v = e v. Then 

grad G(x) = (1/F(u))u grad F(u), and the statement of the lemma is immediate. 

If  in addition to the hypothesis above we have that F(u) and u grad F(u) 

extend to be continuous on R~, then the inequality F(uv)[F(u) > v"gr~ r~u)/r~U)con_ 

tinues to hold for v ~ R~_ and any u ~ R~ for which F(u) ~ O. 

To prove the theorem, we will apply the lemma to the function Q(y). That 

log Q(e y) is convex follows from I.emma 3. The remaining extended hypotheses 

are obviously true. Let x ~ F ( r +  1, r + 2, ..., n), a regularly defined flat. Let 

0~>0,  f l > 0 ,  ~ + f l =  1. Put u = A ( x ) ,  and let v~R"+ be such that A(x)v 

= ~A(x)+ flA(h(x)). That such a v exists is clear since A(x) and A(h(x)) have 

the same support. Then the extended Lemma 10 yields that 
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P(~x + Bh(x)) = 9.(A(~x + ~h(x))) >= v~(~)) 
P(x) Q(A(x)) 

= f I  - f l  
va,(x) + 

i = l  - -  i=1 t ~AlT~-) J 

= t -A~) -J  ~=~/ A~(x) ! ,=~ 

I 

Now if p, q ~ R~)satisfy ~Pi  = ~qi  = 1, then as a function of  p, pq achieves its 

maximum uniquely at p = q. Hence the quantity enclosed in braces above is 

greater than or equal to one, and equals one if and only if  Ai(h(x)  = As(x), 

1 < i < r, which implies h(x) = x. The theorem is the special case a = 0, fl = 1 

It is worth pausing now to interpret the above results for the permanent. In 

this case we take A = R k2 , points of A will be doubly indexed sequences Yi4, 1 _< i, 

j < k, and for K the set of doubly stochastic matrices D k. Ris the set of  generalized 

doubly stochastic matrices (entries arbitrary in sign). For  S we simply take co- 

ordinate functions themselves, so that A(x)  = x. ~ is the set of permutation 

matrices, and so Q ( y ) =  ~ , ~ a y  ~, and P ( x ) =  Y ~ x  ~ is just the permanent 

of  x. Then h(x) = (1/P(x))  Z,x~n. Since h is a bijection, we have the statement 

that every doubly stochastic matrix y may be written in the form 

1 

for a unique choice of doubly stochastic x. 

Consider the set of all representatives y = ~p~n of y as a convex sum of  

permutation matrices. I believe the representation above is the unique one for 

which II~p~ ~ is minimized. 

We also have the statement that P(l(x))  < P(x),  x ~ K ,  with equality if  and 

only if x = l(x) = h(x), but the map 1 has a complicated nature, even though its 

inverse h is relatively simple. However, for the case at hand, a somewhat simpler 

map which does not increase the permanent can be found. 

LEMMA 11. Let  x ~ D k, x not a i:ermutation matr ix .  Then  

,(x_, ,(x, 
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with equality if and only if h(x) = x. 

We are going to apply Lemma 10 to the function F(y) = l l  k_- l(]~k= lYij)- Q(Y). 

F(y) is a homogeneous polynomial with non-negative coefficients, and satisfies 

the extended hypothesis of Lemma 10. logF(e y) is convex by Lemma 3, since it is 

the Laplace transform of a measure. We select u = x, x not a permutation 

matrix, so that F(u) # O. We find u grad F(u)/F(u) equal to 

x - P(x)h(x) 
1 - P ( x )  

k2 We pick v ~ R +  such that x v  = ( x  - P ( x ) h ( x ) ) / ( 1  - P ( x ) ) ,  and we obtain 

1 - p[X - P ( x ) h ( x ) ]  
F(xv)__ _ \ 1 - P ( X )  ] ~ v(x_P(x)h(x))/(X_P(x) ) �9 

F(x) 1 - P(x) - 

Repeating the last argument used in the proof of Lemma 10, we easily find that 

the right-hand side is greater than or equal to one, with equality only for h(x) = x. 

We return now to the general case, and want to investigate when, for y and 

y '  ~ R~, we have that q(y) = q(y'). Let F = F(r + 1, r + 2, ..., n) be a regularly 

defined flat and suppose that both y and y '  have F-like support. Then according 

to Lemma 5, there exist ill, f12, "", fl, > 0 such that yi = fl,y[ and such that 

17" fl~'(*) a (constant) for all x ~ F. Since we are in the homogeneous case, i = l  = 

we can equally well assert that there exist Vl, ~'2,'", V, > 0 and a positive constant 

such that Yi = 6?iY~ and such that II~=~?~ '(*) = 1 for all x ~ F .  The last is 

equivalent to asserting that l I~=l~  '(~ = 1 for all e ~ g  n F. 

We introduce the semigroup S -- {veR~ ira(,) > 1 Vx~K} . ,  and the group 

a = {?~s[~ 'A(~) = 1Vxek}. 

LEMMA 12. S is a closed convex set and G is the set of its extreme points. 

For let V,~' e S, p, q > 0, p + q = 1. Then 

n n 

i : l  i = l  

This proves S is convex. 
_ = ,z ~ , ( x )  Let x ~ K ,  so that Ae(x) > 0, i = 1,2, . . . ,n.  Then ya(x)  l-li=t ____ l. 

Now if ~" is a sequence of elements in S, and any one of the coordinates of this 

sequence is approaching zero, then one of the remaining coordinates must be 

approaching infinity. This proves S is closed. 
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To see that every point of G is an extreme point, suppose g = pg' + qg", 

g , g ' , g " ~ G ,  p ,q  > 0, p + q = 1, and xe_K. Then 

(pg. + qg,,)a(x) = (pg[ + qgTl~t,(~) > (g;)A,(~) (g.)A,(x) 
1 = 1  i i 

with equality holding only if g '  = g", so points of G are extreme points. 

Next let 7 ~ S .  Define ~1 = {e el7 1). Suppose, for the sake of  

argument, that A~(e) = 0 for every e~d" 1. Then we can make 71 smaller and 

still maintain 7 Ate) > 1 for all e E 8. So we replace V~ by a suitable smaller 7~. Put 

7' = (7~,72,'",7~) and 7 " =  (271 - 7~,72,'",7~). Then 7 = 7'/2 +7"/2,  7 ' ~S ,  

and 7" ~ S since the coordinates of  7" are at least as great as those of 7'. Finally 

7' and 7" are distinct. 

So if V is to be an extreme point, then for every 1 < i < n, A~(e) ~ 0 for some 

e e l ' s .  Let the cardinality of  8~ be p and put x = (1/p)~,~s~e.  Then x ~ K ,  

since As(x) > 0 Vi, so x may be written x = ~ e ~ , p ~ e  as a proper convex com- 

bination of all the extreme points of K. But then 

1 = 7A(x) = 7 ~P'a(')= I-I (TA(~)) p', 
eeS '  

and the right-hand side, which is greater than or equal to one, can only be equal 

to one if 7 A(e) = 1 Ve ~ r  and so for V e ~ r  that is, 7 ~ G. 

Note that we are not asserting that S is the convex hull of its extreme points. 

COROLLARY 13 (to the proof). I f  7 ~ S, 3 7' e G with each coordinate of 7' no 

greater than the corresponding one of 7. 

LEMMA 14. Suppose F = F(r  + 1, r +2,  ..., n) is a regularly defined f iat  

and that f l l ,  f l 2 , ' " , f l r  are  positive numbers such that II~=lfl~ '(~)= 1 for  all 

x e F. Then there exists 7 ~ G such that fl~ = 7 i f  or i = 1,2, .-., r. 

For  the proof it will suffice to suppose that F is a face of  K, for our argument is 

such that it enables us to advance from any flat to a second flat of which the first 

is a face. 

Let the dimension of K be p, so the dimension of F is p -  1. Pick in F any p ex- 

treme points el, e2,"  ", ep such that -g'is the affine subspace determined by these. Let 

ep+ 1 be an extreme point of K not in F, so t h a t / ( i s  determined by e~, e2 ," ' ,  ep+ t. 

Select positive numbers P,+~,fl,+2, '" ,Pn such that --~=tmrr n aA,tep+lJ = 1. Now any 
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x e K may be written as a strictly improper convex combination (coefficients arbi- 
�9 ~;'~ p+  1 trary in sign but of coefficient sum one) of ex, ez,...,  ep+ 1, that is, x = ~v = 1Pvevy. 

But then 

= [-[ fir ~A'(~) 1. 
i = 1  / = 1  v = l  

COROLLARY 15. (to Lemma 5). I f  y and y '  have F-like support for some flat 

F, and q(y) = q(y'), then there exists ? ~ G and positive constant & such that 

Yi = 5?iYi', i = 1, 2,.. . ,  n. 

& is unique i f  F = F(r + 1, r + 2, . . . ,n) is regularly defined, the numbers 

~1, 72,'",  ~, are also unique. 

THEOREM 16. Let F = F(r + 1, r + 2, . . . ,n)  be regularly defined and y 

have F-like support. Then there exists an x E K, a 6 > 0 and a ? ~ G such that 

y = 6vA(x). (5 is unique; x ~ F_ and is unique. 

Consider z = A(l(q(y))) ~ R~o ; z clearly has F-like support. But q(z) = h(l(q(y))) 

= q(y). Putx  = l(q(y)), xEF.  By Corollary 15, y = &?A(x), and 5 is unique. 

If  also y = &?'A(x'), then q(y) = h(x) = h(x'), implying x = x'.  

For the case of doubly stochastic matrices, the above is essentially the so- 

called DtAD 2 theorem [1], [6], save for the description of the group G, which is 

obtained later in this paper. It remains to inquire into the uniqueness of ?. To this 

end, we say x e K is indecomposable if for each 1 _< i _< n, there exists e e ~ for 

which Ai(e) # 0 and such that 1-I~,iAo(x) A~t~) ~ O. With F-like support, y is 

called indecomposable if some (hence any) x ~ F is indecomposable. 

THEOREM 17. Let y in Theorem 16 be indecomposable. Then ? is unique. 

For suppose y = &yA(x) = &?'A(x). Put fl = ??' -1. Then flA(x) = A(x); 

that is, flvAv(x) = Av(x). Then 

N a a 

[I PJ~ I] Ao(x) "~ = I-I A (x) 
v = l  v = l  v = l  

Since Y/v,ifl~ v(e) = 1/fl At('), and we may select e such that As(e)~ 0 and such 

that  IIv,~Av(x)a~(e)# 0, we have fli = 1, for i = 1,2,.. . ,n. 

For the case of doubly stochastic matrices, what we have called indecompos- 

ability above corresponds to what is called there complete indecomposability. The 

equivalence of the two follows readily from K6nig's theorem. 
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We want to obtain a characterization of the number 6 appearing in Theorem 16. 

To this end we define for y c Rg, 

1 
E(y) = ~ min y,s~. 

8 ~ S  i = 1  

By virtue of Corollary 13, it is obvious that 

1 
E(y) = ~ min ]~ yy , .  

~ e G  

THEOREM 18. Let y = 6pA(x), 6 > O, p ~ G, x e K. Then 

Q(y) ] 1/, 
E ( y )  = 6 = P ( l ( q ( y ) ) )  

We have 1/d minr ~ o Z YYl = 6/d min ~ go Z Ai(x)~i > 6 HI = x ~(1/a)a, (x) = 6, by 

the inequality of the arithmetic and geometric mean. On the other hand, 

l id  ]~y~p-i = 6. 
But also, if y = 6pA(x), we have seen in Theorem 16 that x = l(q(y)). Note as 

well that Q(y) = 6aQ(A(x)) = 6aP(x), so we obtain the remaining equality o 

the theorem. 

THEO~M 19. E(y) is continuous. I f  Q(y) = O, then E(y) = O. Otherwise 

Q(y) ] 1/a 
E ( y ) =  P(l(q(y))) 

First let us note that the function described above is continuous. For if Q(y) ~ O, 

P(l(q(y))) is uniformly bounded away from zero, since P is bounded away from 

zero on K. 

Now let yV be a sequence approaching y, and let y be arbitrary in G. Since 

1/d~,y~i > E(yV), we have l id ~Yi~ => lim supv_, ooE(yV), so E(y) > lim sup E(y~ 

Then let yV be a sequence such that y~' > 0 for all i and v, and such that y~ de- 

creases monotonically to y;. Clearly, then, E(y ~) > E(y), so lim sup E(y ~) >= E(y). 

Since E(y ~) is monotone, lim E(y ~) exists. Hence E(y)= lira E (yO), for any positive 

sequence converging monotonically to y. But then, since y~ has K-like support, 

we know that 

E ( y O ) = [  Q(yV) ]l/a ' 
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and passage to limit gives desired result. 

There are several more properties of E worth singling out, but first we need an 

mtermediate result. 

LEMMA 20. Suppase y~R~,  an:f Yl, Y2," ' ,Yr  :/: O, Yr+I,Y~+2,'",Yn = O. 

Put F = F(r + 1, r + 2, ... ,n). I f  F is empty, which is so if  and only if Q(y) = O, 

put 37 = O. Otherwise, let F'  = F(s + 1, s + 2, ..., n), s < r, be the same fiat  

regularly defined, and put Yi = y~ for i = 1,2, . . . ,s ,  and y~ = O for i >= s +  1. 

Then Q(y) = Q(y). I f  Q(y) v ~ 0, then q(y) = q(37). Hence always E(y) = E(y). 

The result is obvious by inspection. 

THEOREM 21. 

i. E is homogeneous of degree one, and E(x + y) > E(x) + E(y); 

ii. E(Tx) = E(x) for  y c G; 

iii. E(A(x)) - 1 for x ~ K ;  

iv. E(xPy q) < EP(x)E~(y), p + q = 1, p, q >_ O; 

�9 [ ya(~) -] l/a 
v) E(y) = max / = - - - - - -  I 

(i) and (ii) are obvious from the definition of E(y), (iii) from Theorem 18. 

As for (iv), let ~ and p be elements of G such that l id ~xi), i and 1/d ~,YiPl are 

within e of E(x) and E(y) respectively. Then since y Pp ~ is also an element of G, 

E(x~Y ~) <- ~ ~,x~yi~iP~ < ~,xiYi ~,Y~Pi 

which gives the desired result. 

For the proof of (v) put 

[ Y"'~' I~' d 
= m a x  

and note first that if Q(y) = 0, tfaen y ate)= 0 V e e 8 e dr hence ~(x) = 0 V x e K, so 

that F(y) = 0. Equally obvious is the assertion that F(y) = 0 implies Q(y) = O. 

Now let y be as described in Lemma 20, and suppose F is not empty. In seeking 

the maximum of yA(X)/A(x)aC~), it is clear that we can confine x to F' .  Thus 

F(y) = F(37). But since 37 has F'-like support we can write 37 = cS~,A(u) for some 

u e _iF'. But then 
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ya0,) = ~d A(u) Acx) 

A(x)at x) A(x)a(x) ' 

and as we have argued before, A(u)a(~)]A(x) a(~) achieves its maximum uniquely 

at x = u. Hence F(y) = 6, but by Lemma 20, E(y') = E(y). 

LEMMA 22. Let y ~ R ~ , y # O ,  a n d s u p p o s e ( y , ~ )  ~ i= lY i  t , o ~ G ,  hasa  

critical point. Then this critical point is a minimum, and y has F-like support 

for  some f la t  F. I f  y is indecomposable, the critical point is unique. 

Let ~ E G be a critical point, let ~ be arbitrary in G, and put z = y~. Then 

(z,  ~t) has a vanishing derivative at t = 0. Thus 

d 
-3:~(z,?')(t = 0) = ztlog~i = 0. 

i = 1  

Since log ~, runs precisely through the orthogonal complement of  the set of  points 

A(e), e E g ,  we must have z = ]~e~seqA(e). Let r / =  ]~qe. I f  q # 0, we may 

write z = r/A(x) for some x ~ ~. I f  r />  0, then since z 8 R~, x ~ K, and z and y 

have same support as A(x). 

Suppose r / < 0 .  Then Ai(x)<_O, 1 < _ i < n .  Let u ~ K ,  t > 0 .  Then 

Ai((1 + t)u - tx) = (1 + t)A~(u) - tA,(x) > O, implying u + t(u - x) ~ K for all 

t > 0. Since K is compact we must have u = x, whence A,(x) = 0, so z = y = 0, 

contradicting our original hypothesis. 

Su p o s e  r/ = 0. z = ]~r /eA(e )  = ]Er/eA(e ) + A(0) - A(O) = A(x) - A(0) for 

some x E A. And Ai(x) - At(O) > O. Again let u s K. Then At(u + tx) = A~(u) 

+ t ( A , ( x ) -  At(O))> O, implying u + t x e K  for all t, which implies x = 0. 

Hence z = A(x) - A(O) = 0 = y, again contradicting our original hypothesis. 

So we must have z = r/A(x), x s K ,  r/ > 0, and so y = qo~-lA(x). By 

Theorem 18, we know that m i n ~  ~(y ,~)  = dq. But also ( y , ~ )  = dr/, showing 

the critical point is a minimum. The uniqueness of  the critical point in case y is 

indecomposable follows from Theorem 17. 

THEOREM 23. L e t T  = { y ~ R ~ J y D y 2 , . . . ,  y , >  0; Y,+I, Y , + 2 , " ' ,  Y, = 0}. 

Then E restricted to T is a real analytic function. Q never vanishes or vanishes 

identically on T. I f  Q ~ O, define for each y ~  T, F, F' and ~ as in Lemma 20, 

and write ~ = 6yA(x). Then yj(OE/Oyj) = O for j = s + 1, ..., r; and yj(OE/Oy~) 

= (6 /d)Aj (x ) for j  = 1,2, . . . ,s.  In case Q - 0 on T, then E - 0 on T, and so all 

derivatives exist and are zero. 

The final assertion of the theorem is obvious, as is the statement about the 
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vanishing of Q on T. So we confine our attention to the case Q ~ 0 on T. We know 

then that E(y) d = Q(y)/P(l(q(y))). As y ranges over T, q(y) which is real analytic 

ranges over points in K all belonging to the interior of the same fiat. Hence 

l(q(y)) is real analytic. Since P(l(q(y))) is uniformly bounded away from zero, 

and Q(y) is different from zero, E(y) is real analytic. 

It is possible now to compute the derivatives of  E directly from the definition, 

but it is easier to proceed as follows. By virtue of  Theorem 19 and Lemma 20, 

it is clear that E does not depend on the (s + 1)st to the rth coordinate, aE/ay /=  0 

for j = s + 1, s + 2, . . . ,  r. Also (aE/(c~yj)(y) = (dE/ayj)(y) for j = 1, 2, . . . ,  s. 

For  notational convenience, we denote aE/ayj by E j, and we extend the de- 

finition of Ej(y) by setting it equal to zero for j = s + 1, s + 2, . . . ,  n. Since E is 

homogeneous of degree one, ~ =  1 yjEj(y) = E(y). Since for any p E G, E(py) 

= E(y), we have piEi(py) = Ei(y). Also for any scalar t, E(p~y) = E(y), from 

which we obtain, on differentiating with respect to t and setting t = 0, that 

~E~=lyiEi(y)logp i = 0. As in the proof  of Lemma 22, the above implies that 

yiEi(y) = ~,erleA~(e). Summing on i, we obtain E ( y ) =  dr/, r/ = ~er/e, and 

r / >  0. Since E(y) is a monotone non-decreasing function of each argument, 

y~Et(y) > O. Referring again to the proof  of Lemma 22, we obtain that yE(y) 

= r/A(x) for some x e K, indeed for some x e F ' .  

Now let v e _F', w be any point in _g', and t be small. Then E(A(v + t ( v -  w))) = 1. 

Differentiating with respect to t and then setting t = 0, we obtain ~ i~ ~ Et(A(v)) 

[At(w) - At(v)] = 0 or ~ET= 1 E,(A(v))At(w) = E(A(v)) = 1. 

We know from just above that Ai(v)Ei(A(v))= (1/d)At(z) for some z EF'. 

Hence ~,tLl(At(z)/Ai(v))At(w)= d for any we  F '  from which we obtain 

= ,  [ ( A , ( z )  - At(v))/at(v)]A,(w) = 0 which gives XtL ~ [(At(z) - A,(v))2/At(v)] 

= 0, implying v = z. Thus Et(A(v)) = 1/d for i = 1, 2,. . . ,  s. 

Now write fi = 6?A(x). Since Et is homogeneous of degree 0, and since ptEi(pY) 

= E~ (y) for any p e G, we obtain 

for 1 < i < s, which completes the proof. 

It is worth remarking now that if we know E in the neighborhood of  a point y, 

we can compute immediately the decomposition of  3~ in form 6?A(x). 

It is also worth interpreting the above for the space Dk of  k x k doubly sto- 
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chastic matrices sitting in the affine space R k~. One finds readily that the group 

G consists of matrices whose i, j th  entry is 2iuj subject to H~21 = II juj = 1. 

Hence E(y) = (I/k)mina,,, ~,yu2iu~ subject to above constraints. 

It is possible to obtain a simple direct proof of the D~AD2 theorem just by 

considering the critical points of the above variational problem. 

THEOREM 24. Let M and m be upper and lower bounds for  P(x). Then for  

any y ~ R~o, MEa(y) >= Q(y) > mEg(y). 

If  Q(y) = 0, the statement is clear. Otherwise let y and )7 be as in Lemma 20, 

and write .17 = 6~A(x). Then Q(y) = Q(y) = 6aQ(A(x)) = Ea(y)e(x), and we are 

done. 

If  Q(y) is homogeneous of degree d < 1, then it is easy to see that Q(y) is a 

concave function, since each of the summands is, so the minimum of P(x) is 

attained at an extreme point of K. This simple observation leads to our next 

result. 

THEOREM 25. Let 2 = mine~c (e )A(e )  ~l/d)ate), and assume d > 1. Then for  

all x ~ K, P(x) > 2(d/n) a-l. 

First we note for any y ~ K that by our remarks above Q(AUa(y)) is a concave 

function on K, so QA(1/d(y)) > 4. 

Next, let x be arbitrary in K, and write Ad(x) = 6~A(y), t5 > O, ~ E G, y ~ K, so 

that A(x) = ~uayl/~AUa(y). Also ~ = E(Ad(x)), and P(x) = Q(A(x)) = ~Q(AUd(y)) 

> 2E(Aa(x)). Let I be the point in R~ with all coordinates equal to one. Then by 

Theorem 21, 

1 = E(A(x)) = E(A(x)I) < E1/a(Ae(x)) �9 E ta- l)/a(i), 

so E(Ae(x)) > 1/Ea-I(I). But E(I) = (1/d)minr~ o ~r i  < n/d. Hence e(x)  

> 2(din) d-~. 

COROLr.ARY 26. l f  XeDk,  then Perm(x) > 1/k k- t .  

COROLLARY 27. Suppose it is known that A(x) has at least r (r < n) com- 

ponents zero. Then P(x) > ,~(d/(n - r)) d- 1. 

For the proof, replace I in the argument above by the point I '  which has zero 

components matching those of A(x), components one elsewhere. Then E(I')  

< (n - r)/d, and the proof is completed as before. 

A simple combinatorial argument which we now present gives a result in some 

respects better than Corollary 26. Fix an integer 0 < p <- n and let V be the 
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collection o f  points in R~ which have p coordinates equal to one, the remainder 

being zero. 

LEMMA 28. Let  x = ( x l , x2 ,  " " , xn )~  R~ and let r 1 = ~,~=1 xi .  In order f o r  

x to be writ ten as a l inear combinat ion with non-negative coefficients of  e lements  

o f  V, it is necessary and s'~fficient that f o r  all 1 g v <_ n, px  v < rl. 

The necessity o f  the condit ion is obvious. The p roo f  o f  the sufficiency is by 

induction on s = n - p. Let us first note that the condit ion is sufficient in case 

s = 0, since the collection o f  inequalities nxo <- ~l implies n r / =  ~,~nx, < nrl, 

and since we have equality, we must always have nxv = r/, that  is, all coordinates 

o f  x are equal. 

Let x be a point  in R~ and p < n. I f  any coordinate  o f  x is zero, we can discard 

it, and we are reduced to a value o f  s less by one, and the result is true. 

Suppose that r, 0 < r _< p, o f the  inequalities px v < ~I are equalities, say px 1 = ~l, 

px2=r l , . . . , px  r = t/. I f  r = p, then r/ > ~ =  i xi = r/, and since we have equality, 

it must be that  xp+~ = xp+2 . . . . .  xn = 0, and we are again reduced to an 

earlier case, so the result is true. 

We now describe a procedure which reduces a given case to one where some 

component  o f  x is zero, or  increases by one the number  o f  inequalities which are 

equalities, which enables us to complete the inductive proof.  

So we suppose no coordinate  o f x  is zero, that  px  a = rl, px  2 = tl, "", pxr = rl, 

O < r < p ,  and p x o < 7 ,  v =  r + l , r + 2 , . . . , n .  Put c t = m i n [ x x ,  x2, . . . ,xp,  

(rl - pxp+l)/p,  (rl -- pxp+2)/p, "", (rl -- px~)/p] and y = (xl - 0t, x2 - 0c, . . . ,xp - ~, 

xp+l , xp+2 , . . . , x , ) .  Then y 6 R ~  and x = so + y  for v e V .  The sum of  the co- 

ordinates o f  y is ~ / -  p~, and it is easy to verify that  pyv < t 1 - p~ for all v, and 

p y ~ = r l - p c t  for i =  1,2,- . . ,  r. I f c t  = x i f o r  some 1 < i < p ,  then y ~ = 0 .  I f  

= ( r l -  pxi)/p for some p + 1 < i _< n then pyz = Tl-- p~t. So either y has a 

zero coordinate or  r + 1 of  the inequalities for y are equalities. 

THEOREM 29. Let  x e Dk and let r be an integer < k k/(k+ 1). Then  the sum o f  

the r largest terms in the expression fo r  Perm(x)  is >_ r /k  k, with equal i ty  i f  and 

only i f  x is the doubly  stochastic ma t r i x  f having all  entries equal. 

First note that  x ~ has a min imum of  1/k k achieved uniquely at x = f.  Let 

x = ~,k~=~porco. Suppose for all 1 < i < kl that  rp~ < 1. Let p be the vector 

with ith coordinate Pi. By the last lemma, we may write p = (1 /0  ~,,q~h~, where 

each hv is a vector with r entries equal to one, remaining entries zero, v being an 

integer in range l < v < (k~) .  Also qo > O and ~,q~ = l. Putting back in the 
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expression for x the expressions so obtained for the p,, we achieve a representation 

x = (l /r)  Y~qvOv, where each 0v is a sum of  r distinct permutation matrices. 

Then x ~ = H v x  ~ > 1/k k. If  we always have x ~ < 1/k k, then we must 

have x ~ = 1/k k, so x ~ = 1/k k, and x = f .  Otherwise, we have, say, x ~ > 1/k k, 

and 01 = ~1 + 7r2 + ... + ~,, from which it follows by the inequality of arithmetic 

and geometric mean that ( l /r)  ~ = 1  x~' > 1/kk. 

The remaining alternative is that for some i, rp~ > 1. But then already 

x"'  > l / r  k >-_ r/k  k, completing the proof. 

There is an interesting complement to the last result. Let I be a set of  k per- 

mutation matrices, each of degree k. We say they are independent if the square 

matrix ~ ~ ~ ~ rc has every entry one. 

THEOREM 30. Let I be an independent set and x e D k. Then i f  x # f ,  x ~ < 1/kk 

for some ~ e I. 

We may write x = ~ i 2 ( r 0 o  7~, where 2(r0 are diagonal matrices, and 

2(r0 orc is matrix multiplication. It is easy to see that E(2(70 o ~) = [II ~= 12~(r0] 1/k 

= x "lk. We have 1 = E(x)  >= ~, ~ ~ ~ E(2(r 0 o z0 _-> ~ ~ ~ i x~/k. If  for some rc ~ I, 

x~/R> 1/k, then for some other ~ ' e I ,  x ~'/k < 1/k. Otherwise we have for all 

~ I ,  x ~/k = 1/k. But then 1 = E(x) = ( l /k)Xi , jx l j  = (l/k)~gt. i E~f2 i (~) rq j  

E ~ I E ( 2 ( r 0 o  r0 = 1. So we must have for any r ce I  that (1/k) E~2i(n) 
k = [ II~= ~ 2~(r0] t/k, implying that 2~(r 0 = l /k ,  implying that x = f.  

We return once more to the general case, and want to give a duality result, 

which can possibly be used to improve Theorem 25. For  any e ~ d ~, we define the 

semigroup S(e) = { y e  Rglya(*)> 1} and the semigroup G(e) = {yeR~o[y a(~ = 1} 

If  # e G, then g G(e) = G(e). Note that S(e) is a convex set, and that if y s R~, then 

min~ ~ a(e)(Y, s) = d(ya(e)/d/A(e)~(*)/4). Let &~" be the convex set consisting of all 

I e Rg which may be written l = ~ ,  ~ ~ c(e)A(e)A(~)/ds(e) with s(e) ~ S(e), and 

the set which may be written as above but with s(e) e G(e). Note that if I e .W', 

then I e R~.. 

THEOREM 31. Let m = m i n ~ r P ( x ) ,  and suppose d > 1. Then 

1 = m a x  E d - l ( l - t a - ~ ) )  = m a x Q d - ~ ( l - ( 7 - ~ ) )  
m 1 ~ . ~  l ~ '  \ 

Also 
m = min la(X)lOA(x) (d- ~)'l(x)/d. 

x ~ K . l ~ . ~  

From our remarks above, it is clear that Q(y) = (1 /d )min~s .e ( l ,  yd). But also 

then, Q(y) = (l/d) min~.~ m i n o ~ .  ( I # , y  d) = m i n ~ E ( l y d ) .  Since d > 1, 
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E(y) = E(I- lldllldy) <= E d- lid(l- 1 / (d -  1)) . Elld(lyd). 

Since E(A(x)) - 1 for x e K, we obtain 

1 
E(IAd(x)) > 

= E d -  1(1- l ( a -  1)) " 

Thus 

93 

1 
P(x) = O(A(x))  >= 

max~ ~ s, Ed- 1 (l-  1/(d- 1)) 

and so 1/m < maxz~zEd-l(l-1/(d-1)).  

But from Theorem 24, we have Ed(1-1led-i)) _< (1/m)Q(l-l/Cd-l)), and this, in 

conjunction with the last inequality, yields 

__1 =< max Qd-l(l-l/~d-1)) 
/'n I e.~' 

Repeating the argument used above, Q(l - lm-1) )  = minv~z E(l'l - a m - n )  

<_ E ( l - l m - n ) ,  on taking the particular case l ' =  I. So Ea(1-1/~a-1)) 

_< (1/m) Q (l-  1/(d- n), < 1/m E(I- l m -  1)), so 1/m > max t ~ .~ E"- 1 ( l -  l m -  1)). Hence 

1/m = m a x ~ z  E d - l ( l - l m - n ) ,  and also 1/m = m a x l ~ Q d - l ( l - l m - 1 ) ) ,  since 
Q(l- 1/(d- 1)) < E(l-  l / (d -  1)), 

The last equality of the theorem is obtained by noting that from Theorem 21, 

m a x [  l-a(xll(d- t) ~ll~ . g(l-ll(a-1)) = 
x,K L a(x) "~') 

Note that all the extrema above can be taken as well with l belonging to the 

convex set s 

Notice that I a(e)/a ~ c(e)A(e) a(~ so that I a0~ > 2 = min ,  ~ t .  c(e)A(e) a~')ld. 

Hence m > ;t min~,~ A(x) <Cd-1)/a) a(~). Since A(x) "w') is no less than (d/n) 4 

(achieved when all A~(x) = din if such exists), the theorem above includes in- 

cidentally Theorem 25. 

If  the minimum of Perm(x) for x e Dk is achieved at x = f ,  then Holder's 

inequality shows easily that minx,o~ Perm(x'), r > 1, is also achieved at x = f .  

Our next result is a slight contribution in this direction. 

THEOREM 32. For every k there exists an r such that min~DRPerm(x')  is 

achieved uniquely at x = f.  

Let N be any neighborhood of f in D~. If  x s N * (complement of N in Dk) , then 
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by Theorem 29 there exists an 8 > 0, 8 independent o f  x, and a n such that  

x ~ > 1/k k + 8. For  simplicity write Perm(x)  = P(x). Thus, for all sufficiently 

large r, P(x ' )  > (1/k k + e)" > P ( f ' )  = k! /k  k'. So by picking r sufficiently large, 

we can guarantee that  minx Eo~ P(x ' )  is achieved at a point  o f  N. 

Construct  the map x ~ h(x), h ( x ) =  (1/P(x))Y_,x~n as in the text fol lowing 

Lemma 10, with inverse map x ~ l(x). The critical points o f  P(x')  are to be 

found among  the solutions o f  h(x')  = x. For  any y ~ R~ having F-like support  

for some flat F, we may write y = tS~A(x), ~ > O, ~ e G, x e F_. Define [y]  = A(x) .  

With this notat ion,  the critical points o f  P(x ' )  are to be found among  the solutions 

o f  x = [ll/ '(x)].  N o w  we need two lemmas. 

LEMMA 33. Let  x e Dk and e > 0. Suppose for  every permutat ion matr i x  

re, x "/k >= l/k(1 + 8). Then for  all  i , j ,  [x,j - 1/k I <_ ks. 

Let V be the convex set o f  x ED k for which x l l  = a. Let A be the set o f  per- 

muta t ion  matrices z~ for which re(l) = 1. Define F(x)  = min ~ ~ A x~/k" F is a concave 

funct ion on Dk or E I f  rr and p e A, note that  F(n  o x o p) = F(x).  And if x e V, 

~r o x o p e V. Hence, by averaging, we see that the maximum of  F on V is attained 

at a point  Xo for which zco Xo o p = Xo, whenever re, p e A. So Xo must be 

1 - a  1 - a  
a ~ 1 7 6  

k - 1  k - 1  

1 - a  k + a - 2  / c + a - 2  

k -  1 ( k -  1) 2 ( k - - l )  2 

1 - a  k + a - 2  k + a - 2  

k - 1  ( k - l )  2 ( k - l )  2 

and F ( x )  < a l lk [ (k  + a -- 2)/(k - 1 ) 2 ]  ( k - l ) / k  I f  now x satisfies the inequalities o f  

the lemma, then 

1 < a l / k  [k  + a - 2"1 (k-1)/k 1 k - 1 k + a - 2 

k(1 + e) = L (k- --  i )  i j / < ~-  a + T (k - 1) ~- 

and thus gives immediately a >= 1/k - e. The last inequality holds for any element 

x~j in x. Since the row sums of  x are one, we also obtain 
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or  

1 1 
xij < ~ + ( k -  1) 8 < ~ +  k8 

completing proof  of the lemma. 

LEMMA 34. There exists a constant ~ < 1/2k such that i f  x ~ D  k and 

Ixu - 1/k[ < e < ~ for  all i,j, then I l/j(x) - 1/k I <_ ~. 

Let u be a matrix with row and column sums zero, t a real variable. The Taylor 

series for h ( f  + tu) starts as 

k 
h ( f  +t~) = f + t-~-~--~u + . . . .  

So the Taylor series for l ( f  + tu) has the form 

k - 1  
l ( f  + t~) = f + t . u + . . . .  

k 

For t = 1, the series converges for all sufficiently small u, and the lemma is clear. 

Now we complete the proof  of Theorem 32. Pick r so large that min .~ E ok P(x) is 

achieved at a point x belonging to N = {x II - 1/kl  :< ~1, with ~ of Lemma 34, 

and also demand r > 8k 2. 

Let x ~ N, and suppose ] x i j  - 1/k ] <= e <= ~, for all i,j. Then [ li j(x ) - 1/k [ <= e, 

so for any permutations n and p, l*/~/l p/k <_ (1 + ke)/(1 - ke) ~_ 1 + 4ke. Put 

y = [lll '(x)].  Then yn/k/yO/k = lnlkTlo/kr <= (1 + 4ke) tl" = (1 + 4ke) 11" �9 1 "-11" 

< (1/r)(1 + 4ke) + (r - 1)/r = (1 + (4k/r)e). Since there exists a permutation p 

such that yO> 1/k k, we obtain for all rr, y~/k >= l/k(1 +(4k/r)e).  Then by Lemma 33, 

i Y. - 1/k I < ( 4k2/r)e, and since we have selected r > 8k 2, we have 

[ Y i j -  1/kl --- 

I f  now x is a fixed point of  map x ~ [ll/ '(x)],  then xii - 1/k is arbitrarily small; 

that is, x =f ,  and we are done. 
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