STUDY OF THE PERMANENT CONJECTURE
AND SOME OF ITS GENERALIZATIONS '

BY
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ABSTRACT

In this paper, for some of the results which were announced in [3], we define, for
every convex polytope, a function generalizing the permanent; we study the
growth of the function, the behavior of its minimum and determine a lower
bound for the minimum. Some of the results are new even for the permanent.
A related function whose properties are strongly linked to the permanent is
also studied, and will be described in greater detail in a sequel to this paper.

For any set T in a real affine space A, we denote by T the least affine subspace
containing T. Let K be a non-empty convex polytope in 4. By K we denote the
interior of K with respect to K. We shall also speak of the relative boundary
of K, which is defined with respect to K. The dimension of K shall be the di-
mension of K.

Let S ={4,,4,, +,4,} be a collection of (not necessarily distinct) affine func-
tions on 4. We say that S is a determining set for K if K = {xe KlA,.(x) = 0Vi}.
If S is a determining set for K, and we have for two points x and y in K that
A(x) = Ay(y) for all i, then necessarily x = y. For let u € K, then for any scalar 4,

A(u + Ay — x)) = Ai(u) + A(A4y) — 4i(x)) = 4(w) 2 0.
Since K is compact, we must have y = x.

Now let & be a finite set of points in A4, let K be the convex hull of &, and let S
be a determining set for K. & contains, then, the set &’ of extreme points of K.
For the sake of convenience, we are going to assume throughout this paper that

no 4; vanishes identically on K. For any subset {i,i,,-,i,} of {1,2,---,n}, we
define
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F(is,igy iy = {(xeK|A(x) =0, i =iy, is+,i,}
and call it the flat determined by {i,,i,,-,i,}. Every flat F is a convex poly-
hedron whose set of extreme points is precisely F n &, and S is also a deter-
mining set for F. The flat F = F(i,i,,---,i,) is said to be regularly defined if
there exists x € F such that A,(x) > 0 for i # i,,i,,---,i,. Clearly every non-
empty flat may be regularly defined. As is usual, a flat of codimension one in K
will be called a face of K.

Let Ry be the closed first 2"-gant in R", R’} its interior. Ry is a multiplicative
semigroup under multiplication per coordinate, and the preduct of u and v will
simply be denoted uv. We define additionally u* = uf'ufu’", 0° = 1. If a is a
scalar greater than or equal to zero, we define u* = (uf,u3, -, ul). If ue R}, we
define u* as above for any scalar a. Also for « = 0 and ueR;, we define
a¥ = (", a", e, o).

Returning now to the convex polytope K, we construct an affine map 4: K — Ry
by setting A(x) = (A;(x), Ay(x),--,4,(x)). Let ¢ be a strictly positive function
on &. For y € Ry, define

Q) = Z c(e)y “©

eed

and for x € K, define
P(x) = Q(A(x)).

P(x) is strictly positive, and we will study its minimum value, which may be
related in fact to the permanent conjecture [5]. For if we let K be the set D, of
k x k doubly stochastic matrices sitting in the affine space R¥’, take for S the set
of coordinate functions, for & the permutation matrices, and ¢ = 1, then P(x) is
the permanent of x, perm(x) = Xx", where the summation is over the k x k
permutation matrices.

Returning again to the general case, we define a map ¢: R — K, by setting

q0) = @%y“) % (eye,

eeé
well defined for y such that Q(y) + 0, and a map h: K — K, by setting
h(x) = g(A(x)).

A few remarks about the map k are in order. Note that if 4,(x)=0, then trivially
A(h(x)) = 0. But the converse is also true. For suppose 4,(h(x)) = 0. Then if
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for e € &, we have A(e) + 0, we must have 4(x)*? =0. Now write x = X*_, p.e,
as a proper (p, > 0Vv) convex combination of extreme points. Since A(x)
= Y p,A(e,), we have A(x)*® # 0 for v = 1,2,---,k, and so we must have
Aye,) = 0, implying A,(x) = 0. All this means, of course, that h maps the relative
interior of any flat into itself. From this it follows that h fixes the extreme points
of K, which is immediate from inspection also.

Our first main result is Theorem 1.

TugorReM 1. his a bijection.
The proof will be composed of a series of lemmas.

LEMMA 2. his onto.

Let F = F(r + 1,r + 2,---,n) be a regularly defined flat, and let v and x belong
to the relative interior of F. Consider the function of x given by
Plx)

G =
0=

As x approaches the relative boundary of F, G(x) goes to plus infinity. Hence
G(x) has a minimum at a point xo € F. Put w = h(xy), x = xo -+ t(w — v), and
consider the function

g(0) = G(x) = G(xo + t(w — v))
defined for sufficiently small ¢ and having a minimum at ¢t = 0. A simple calculation
shows that (d/dt)A4,(x) = A(w) ~ A(v). We may now write logg(?) = log P(x)
- 2. A (v)log A(x). Hence:

_9 ‘ — 1 a0 v Al
0=20 = ppg I @4 T EA (40 - 40)
- 2 S 4 - 40)
_§ AW 5 AD o
= I R0 - A@) — T (A0~ 40)

y (A - 4,(m)*

i=1 A(xo0)

from which it follows that A (w) = A,(v) for all i, which implies that h(x,) = v.

Since any v e K belongs to the relative interior of some flat, the proofis completed.
Let ¢ be a not identically zero Borel measure of compact support in R™ equipped

with the usual scalar product { -, * >, and put
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L) = [ exp sy (s
defined and differentiable for all xe R™ [4].
LemMA 3. 0%logL(x)/0x,0x; is positive semi-definite and logL(x) is a

convex function.
As a straightforward computation shows:

0% log L(x) L )
Wnr} = I*(x) a;logL(x +Ar) (A=0)

= 1/2 J (ryt — s)?exp{x,s+ £ p(ds)u(dr)

for any r € R™, which proves the lemma.

I(x) X

ij

LemMMA 4. Suppose grad log L(x) = grad log L(y). Then <(y—x, s)
= {y — x,t) for any pair of points t and s in the support of p.
Let re R™, AeR. As the last lemma shows,

{gradlog L(x + Ar),r) = d% log L(x + 4r)

is a non-decreasing function of A. Put r = y — x, and compare at A = 0 and
A = 1. Thus {gradlogL(y), y — x> = {gradlogL(x), y — x). Since we have
equality in the last inequality, we must have that {(gradlog L(x + Ar), r) is con-
stant for 0 £ A < 1. Hence

d2

0 dA?

logL(x + Ar) (A =0)

. f = x, t = s)2expx, s + 1) ulds) u(de).

Since the integrand is non-negative, the conclusion of the lemma follows.

Now let y € Rg. The support of y is defined to be the set of 1 < i < n such
that y, # 0. Let F = F(r + 1, r + 2,---,n) be a regularly defined flat. y is said to
have F-like support if y, vz, ¥, # 0, and Y, 1, Vpr2,*» Y, = 0. This is the
same as saying that y has the same support as A(x) for some x € F. Clearly, if
the support of y contains the support of A(x) for any x € K, then Q(y) * 0.

Let y have F-like support and put u = (logy,,logy,,--,logy,), ueR".
Define B(e) = (A,(e), A,(e), -+, 4,(e)) and put

Lw)= X c(e)exp{u,Ble)).

eeénF

Notice that L(u) is the Laplace transform of a finitely supported measure, namel
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one having mass c(e) at the point B(e) for all ec & N F. Observe as well that
L(u) = Q(y), and that (gradlog L(w)); = 4;(q(y)), for j = 1,2,--,r.

LemMa 5. Let y and y' have F-like support, and suppose q(y) = q(y’).
Then there exists o € R" such that X',_; ;A4 (x) = d(constant) for all xeF, and
such that y; = e*'y/, i = 1,2,---,r.

Construct u and u’ related to y and y’ as above. Then we have gradlog L(u)
= gradlog L(u’). By Lemma 4, it follows that {u —u’, B(e)> = {u — u’, B(f))
forany eand feé& N F; or X[_;log(y;/yDA(e) = d. Put «; = log(y;/y}). Then
Xi-10,4e) = d for all ee & N F, and since every xe F may be writtenas a
convex combination of such e, the lemma follows.

Notice that if y and y’ are related as concluded in the lemma, then necessarily

a(y) = q(y").

LEMMA 6. h is injective.

Forlet x and x’ be pointsin F such that h(x) = h(x"), thatis, g(A(x)) = g(A(x")).
Then there exists o € R" satisfying the conclusions of Lemma 5, that is,

Afx) = e¥A(x), i=1,2,-,r, and X Ay) =d
i=1

14

forallyeF.Puta = X}, A(x)and a’ = X\_, A(x"). Then

using convexity of the exponential function. Next, reverse the roles of x and x’,
replacing « and d by their negatives, to obtain a’/a = e¢™%*. In the case d = 0,
compare the two inequalities to obtain @ = a’. But then the inequality aja’ = ¢/*
is an equality, and since the exponential function is strictly convex, we must
have that «; is a constant independent of i, and since d = 0 = X,;0,4,(y), o; is in
fact always zero.

In case d > 0, multiply the two inequalities to obtain 1 = exp(d(l/a’ — 1/a)),
which implies a’ = a. But then 1 = afa’ = ¢¥*’, which is a contradiction. The
case d < 0 is settled symmetrically.

So we must have d = 0, ¢; =0, and then A(x) = A(x’) for i = 1,2,---,r, but
trivially for i = r + 1,r 4+ 2, -+, n, implying x = x'.

Since h: K — K is a bijection, it has an inverse which we denote by I [ is
continuous by a well-known theorem on invertible maps of compact Hausdorff

spaces. Actually much more is true.
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THEOREM 7. Let F be a flat (possibly K). Then | is a real analytic map of
F to itself.

Since h is a real analytic map cf F to itself, [ will be real analytic at points where
the differential of h is non-singular. So let F = F(r + 1,r + 2, -+, n) be regularly
defined, x € F and v e F. Then the differential of h at the point x in the direction
v — x of the tangent space to F at x is given by (d/d)h(x + t(v — x)) (t = 0), and
we must show this is zero only for v = x. A routine computation shows that the
above is equal to

— (Ai(0)— Ai(x))-

S c(e)A(x )A“*’{ > A9 40~ A,<x))}e Wy 3 )

P()e IIA() i=1 l()

Suppose the above expression is zero. Noting that (1/P(x)) X, . s c(€)4(x) “!4 ()
= A (h(x)), we obtain that

1 o (g AQ
75 %, 04 | T 49 (400) - 44,0
= 4009) = 275 (400) ~ 4() = 0 for any .

Let s € R" be point whose ith coordinate is (4;,(v) — 4,(x))/A(x). Then from the
above we obtain further
>: c@AXY@ X Afe)Afe)ss;
P ( ) ee 1<i,jsr
- X Ah(x)A[(h(x))s;s; = 0.

1<i,jsr

Now put u = (log 4,(x),log 4,(x), ---,1og 4,(x)), and form the function L(u)
as in Lemma 4. Another routine computation shows that the expression on the
left immediately above is precisely (d2/dA*)log L(u + 4s)(1 = 0). But the vanishing
of the last expression implies, referring to Lemma 3, that s, B(e)) = d (constant)
for all ee& NF, or X% [(4fv) — 4i(x))[ALx)] Afe) = d, from which we
obtain X%_ [(4,(v) — 4)(x))/A(x)] A(w) = d for any we F. On comparing for
w=1v and for w=x, we see that X}_;[(4(v) — 4(x))*/4(x)] = 0, which
implies that » = x.

We can also obtain a simple inequality for P(x).

LEMMA 8. For all x and ve K, P(x)/A(x)*® = P(I(v))/A(I())*®.
First, let x and v belong to K. Referring to Lemma 2, we have that the minimum
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(as a function of x) of P(x)]A(x)*™ is achieved uniquely at point x = I(v). Hence
in this case A(x)"? P(x) £ A(I(v))*“/P(i(v)). Since x € K, the left-hand side of
the above is continuous in v. It is easy to see that A(v)*"“”/P(v) is continuous
in v, so the right-hand side is likewise continuous. Thus the inequality holds for
any ve K provided x € K. But now the left-hand side is a continuous function of
x € K, so the inequality holds generally.

Under certain further assumptions, the map h has an additional remarkable
property. The function Q(y) is homogeneous of degree d if X/-,4,(e) = d for all
ec &, which is same as saying 2., A(x) = d for all xe K. If, for example,
K has a non-empty interior with respect to 4, and A is equipped with a Euclidean
metric, then since the sum of the inner normals to the faces of K with lengths
equal to the area of the faces is zero, homogeneity can be achieved by appropriate
choice of S. For the remainder of this paper, we will assume Q is homogeneous
of degree d. In this case we have Theorem 9.

THEOREM 9. P(h(x)) = P(x), with equality only for h(x) = x.
The proof will follow from Lemma 10.

LemMa 10. Let F(x) be a positive, twice continuously differentiable function
on R% such that logF(ex) is a convex function of x. Then for u and veR",,
F(un)/F(u) 2 vuyrad F(u)/F(u')

Put G(x) = log F(e*). Then by Taylor’s theorem

G(x +y) = G(x) + grad G(x),y> + > iG—-(x + 00y,
2 ;; Ox0x;
for some 0 < 0 < 1, The third term on right above is non-negative since G is
convex. Hence G(x + y) = G(x) +{grad G(x),y). Let u = ¢*, v = ¢’. Then
grad G(x) = (1/F(u))u grad F(u), and the statement of the lemma is immediate.

If in addition to the hypothesis above we have that F(u) and ugrad F(u)
extend to be continuous on R}, then the inequality F(uv)/F(u) = v*o FWF® on_
tinues to hold for ve R} and any u € Ry for which F(u) # 0.

To prove the theorem, we will apply the lemma to the function Q(y). That
log Q(¢’) is convex follows from Lemma 3. The remaining extended hypotheses
are obviously true. Let xe F(r + 1,7 + 2,---,n), a regularly defined flat. Let
a0, >0, a+f =1 Put u=A(x), and let veR} be such that A(x)v
= aA(x) + BA(h(x)). That such a v exists is clear since A(x) and A(h(x)) have
the same support. Then the extended Lemma 10 yields that
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Plax + ph(x)) _ Q(A(xx + Bh(x)) 5 aeien

P(x)  QAk) T
- fI UiAi(h(x)) — l—'-[ {O‘Ai(x)A"iJgA.(h(x))}"""‘("”
i=1 i=1 §
r Ai(X)aAg(h(X))ﬁ A;(h(x)) _ r A‘(h(x) BAL(h(x))
= 156 = LS
1

r aAi(h(x)) A;(h(2))/a } Bd
S Sl
aAi(x)

Now if p, g€ Ry satisfy Xp; = Xq; = 1, then as a function of p, p? achieves its
maximum uniquely at p = gq. Hence the quantity enclosed in braces above is
greater than or equal to one, and equals one if and only if A, (h(x) = A(x),
1 £ i £ r, which implies h(x) = x. The theorem is the special casea = 0, § = 1

It is worth pausing now to interpret the above results for the permanent. In
this case we take A = R, points of 4 will be doubly indexed sequences y;, P11,
j £ k, and for K the set of doubly stochastic matrices D,. Kis the set of generalized
doubly stochastic matrices (entries arbitrary in sign). For S we simply take co-
ordinate functions themselves, so that A(x) = x. & is the set of permutation
matrices, and 50 Q(y) = X,..e)", and P(x) = X, ,x" is just the permanent
of x. Then h(x) = (1/P(x)) Zx"™r. Since h is a bijection, we have the statement
that every doubly stochastic matrix y may be written in the form

y = F(lx—) Zx"n
for a unique choice of doubly stochastic x.

Consider the set of all representatives y = X p,n of y as a convex sum of
permutation matrices, I believe the representation above is the unique one for
which II, p2* is minimized.

We also have the statement that P(I(x)) < P(x), x €K, with equality if and
only if x = I(x) = h(x), but the map [ has a complicated nature, even though its
inverse h is relatively simple. However, for the case at hand, a somewhat simpler
map which does not increase the permanent can be found.

LemMA 11. Let x€ Dy, x not a permutation matrix. Then

x — P(x)h(x)
(T ) 570
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with equality if and only if h(x) = x.

We are going to apply Lemma 10 to the function F(y) = IT. ,(Z¥_ ,y:,) — Q(»).
F(y) is a homogeneous polynomial with non-negative coefficients, and satisfies
the extended hypothesis of Lemma 10. log F(¢’) is convex by Lemma 3, since it is
the Laplace transform of a measure. We select ¥ = x, x not a permutation
matrix, so that F(u) # 0. We find u grad F(u)/F(u) equal to

x — P(x)h(x)
1-P(x) °

We pick ve R¥*such that xv = (x — P(x)h(x))/(1 — P(x)), and we obtain

'x — P(x)h(x)
rey (TR0 )
F(x) 1 - P(x)

v (x=P(x)h(x))/(1~ P(x))

v

Repeating the last argument used in the proof of Lemma 10, we easily find that
the right-hand side is greater than or equal to one, with equality only for h(x) = x.

We return now to the general case, and want to investigate when, for y and
y’ € R}, we have that g(y) = q(y"). Let F = F(r + 1,r + 2,---,n) be a regularly
defined flat and suppose that both y and y’ have F-like support. Then according
to Lemma 5, there exist f,,f,, -, B, > 0 such that y;, = B,y and such that
M7, pA® = o (constant) for all x € F. Since we are in the homogeneous case,
we can equally well assert that there exist y,7,,+-*,7, > 0 and a positive constant
5 such that y; = dy,y, and such that TI’.,y{*® =1 for all xeF. The last is
equivalent to asserting that IT;_,yi'® = 1 forallee& N F.

We introduce the semigroup S = {yeR} [y*® = 1 VxeK}., and the group
G = {yespy"™ =1Vxek}.

LEMMA 12. S is a closed convex set and G is the set of its extreme points.
For let y,y' €S, p,q 20, p+ g = 1. Then

oy + qy)*® = H1 (v + @) 2 TGO 2 1.
i= i=1

This proves S is convex.

Let x€K, so that 4,(x) >0, i = 1,2,-,n. Then y4® = II"_ y&® > 1,
Now if y* is a sequence of elements in S, and any one of the coordinates of this
sequence is approaching zero, then one of the remaining coordinates must be
approaching infinity. This proves S is closed.
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To see that every point of G is an extreme point, suppose g = pg’ + qg”,
9,959"€G,p,g 20, p+q =1, and xe K. Then

n n PF m
oo+ 07" = T] G+ aa*® 2 [Tair] | 1T @]
= i= i=

_i
with equality holding only if g’ = g”, so points of G ate extreme points.

Next let y€S. Define &, = {ee&|y*® = 1}. Suppose, for the sake of
argument, that 4,(e) = 0 for every ee &,. Then we can make y, smaller and
still maintain y4® > 1 for all e &. So we replace y, by a suitable smaller y;. Put
7' = (172" ¥n) @nd ¥ = (2y1 = 1, ¥2,*+,7a)- Then y = ¥'[2 +9"2, y' €S,
and 7" € S since the coordinates of y” are at least as great as those of y’. Finally
y’ and y” are distinct.

So if y is to be an extreme point, then for every 1 < i < n, A(e) # 0 for some
ec&,. Let the cardinality of &, be p and put x = (1/p)X,. ¢, Then xeK,
since A,(x) > 0 Vi, so x may be written x = X, ¢ p.e as a proper convex com-
bination of all the extreme points of K. But then

1= ),A(X) =9 IpeAle) _ H (yA(E))p.’

eed’

and the right-hand side, which is greater than or equal to one, can only be equal
to one if y2® =1 Yee &', and so for ¥ e &; that is, y€ G.
Note that we are not asserting that S is the convex hull of its extreme points.

COROLLARY 13 (to the proof). If y€ S, 3y’ € G with each coordinate of y' no

greater than the corresponding one of y.

LeMMA 14. Suppose F = F(r + 1,r 4+2,--,n) is a regularly defined flat
and that By, Bs, -+, B, are positive numbers such that Tj_, B'™ =1 for all
x e F. Then there exists y G such that B; = y; for i = 1,2, 1.

For the proof it will suffice to suppose that F is a face of K, for our argument is
such that it enables us to advance from any flat to a second flat of which the first
is a face.

Let the dimension of K be p, so the dimension of F is p—~1. Pick in F any p ex-
treme points e;, e;, -+, e, such that Fis the affine subspace determined by these. Let
e,+1 be an extreme point of K not in F, so that Kis determined by e, ez,*, €5+
Select positive numbers B, 1, fr+2, > B, such that IT,%, g+ = 1. Now any
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x € K may be written as a strictly improper convex combination (coefficients arbi-
trary in sign but of coefficient sum one) of e, e,, -+, €,,,;that is, x = X2%1pe,,

But then
n p+1

ﬁ ﬁ;l:(x) = H H ﬁ?w‘ii(ev) =1.
i=1 i=1 v=1

COROLLARY 15. (to Lemma 5). If y and y' have F-like support for some flat
F, and q(y) = q(y’), then there exists ye G and positive constant 6 such that
yi=08pypi=12-n

8 is unique if F=F(r+1,r+2,--,n) is regularly defined, the numbers
P1,Y25 "> ¥ are also unique.

THEOREM 16. Let F = F(r +1,r+2,---,n) be regularly defined and y
have F-like support. Then there exists an xe K, a 6 > 0 and a y< G such that
y = 6yA(x). 0 is unique; x€ F and is unique.

Consider z = A(I(q(y))) € Ry ; z clearly has F-like support. But g(z) = h(l(q(y)))
= q(y). Putx = I(q(y)), xe F. By Corollary 15, y = yA(x), and 6 is unique.
If also y = y"A(x"), then q(y) = h(x) = h(x'), implying x = x’.

For the case of doubly stochastic matrices, the above is essentially the so-
called D, AD, theorem [1], {6], save for the description of the group G, which is
obtained later in this paper. It remains to inquire into the uniqueness of y. To this
end, we say x € K is indecomposable if for each 1 £ i < n, there exists e & for
which Ae) # 0 and such that IT,.; 4,(x)*® # 0. With F-like support, y is
called indecomposable if some (hence any) x € F is indecomposable.

THEOREM 17. Let y in Theorem 16 be indecomposable. Then y is unique.
For suppose y = 6yA(x) = 6y'A(x). Put B =y’ ~% Then BA(x) = A(x);
that is, ,4,(x) = A,(x). Then

l'"I ﬁﬁ"(e) ].:[ Av(x)Av(e) — ﬁ Av(x)Av(e) .
v=1 v=1 v=1

v#i v#El v#i

Since IT,,;B2@ = 1/, and we may select e such that A;(e) # 0 and such
that IT,,;4,(x)*"®# 0, we have §; = 1, for i = 1,2,-+-,n.

For the case of doubly stochastic matrices, what we have called indecompos-
ability above corresponds to what is called there complete indecomposability. The
equivalence of the two follows readily from Kénig’s theorem.
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We want to obtain a characterization of the number J appearing in Theorem 16.
To this end we define for y e Rg,

1 .
E(y) = 7 min s

seS i=1

By virtue of Corollary 13, it is obvious that

1.
E(y) = g min X yi;.

veG

THEOREM 18. Let y = dpA(x), 6 > 0, pe G, x€ K. Then

T o 7*
EG) =2 = [P(/(q(y)»] :

We have 1/dmin, g Ly = 6/dmin, J¢ X A(x)y;
the inequality of the arithmetic and geometric mean. On the other hand,
1/d Zy,p;~" = 6.

But also, if y = 8pA(x), we have seen in Theorem 16 that x = I(g(y)). Note as
well that Q(y) = 8°Q(A(x)) = 8P(x), so we obtain the remaining equality o
the theorem.

> 51]';:1 y(lld)Ai(x) =4, by

THEOREM 19. E(y) is continuous. If Q(y) = 0, then E(y) = 0. Otherwise

o) ] 1
EW) = | s> .
0 = #taom
First let us note that the function described above is continuous. For if Q(y) # 0,

P(l(q(y))) is uniformly bounded away from zero, since P is bounded away from
zero on K.

Now let y’ be a sequence approaching y, and let y be arbitrary in G. Since
1/dXy}y; 2 E(y*), we have 1/dXyy; = limsup,., ,E(y°), so E(y) 2 limsup E(y").
Then let y° be a sequence such that y? > 0 for all i and v, and such that y; de-
creases monotonically to y,. Clearly, then, E(y*) = E(y), so limsup E(y") = E(p).
Since E(y") is monotone, lim E(y”) exists. Hence E(y)= lim E()*), for any positive
sequence converging monotonically to y. But then, since y° has K-like support,

we know that
2(y") ]”"

E0) = [Fa—(m‘) ’
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and passage to limit gives desired result.
There are several more properties of E worth singling out, but first we need an

mtermediate result.

LemMA 20. Suppose y€R), and y, 92,9 # 0, YortsVesrzr> Vs = 0.
PutF = F(r + 1,r 4+ 2,---,n). If F is empty, which is so if and only if Q(y) = 0,
put j = 0. Otherwise, let F' = F(s+ 1,s +2,--.,n), s < r, be the same flat
regularly defined, and put 3, = y, for i = 1,2,---,5, and , = 0 for i = s+ 1.
Then Q(y) = Q(F). If Q(y) # O, then q(y) = q(J). Hence always E(y) = E(¥).

The result is obvious by inspection,

THEOREM 21.

i.  E is homogeneous of degree one, and E(x + y) 2 E(x) + E(y);
ii. E(yx) = E(x) for yeG;

iii. E(A(x)) = 1 for xeK;

iv. EGPy) S EP(0E*(»), p+q=1,p,q20;

. pA) i
V) E(y) = max[ ] .
xekK A(x)A(x)

(i) and (ii) are obvious from the definition of E(y), (iii) from Theorem 18.
As for (iv), let y and p be elements of G such that 1/d Xx;y; and 1/d Zy;p; are
within ¢ of E(x) and E(y) respectively. Then since y*p?is also an element of G,

E(x*y%) £ 1Zx?’y-")v‘-’ I (lzx‘y»)p (EZ)’P-)(‘
= d iJilriVri = d i l- d irFt

which gives the desired result.
For the proof of (v) put

yA(x) 1/d
F(y) = max [ < ] .
xek L A(x)*™

and note first that if 0(y)=0, then y 420 V ecge &, hence §*® =0 VxeK, so
that F(y) = 0. Equally obvious is the assertion that F(y) = 0 implies Q(y) = 0.
Now let y be as described in Lemma 20, and suppose F is not empty. In seeking
the maximum of y4®/4(x)**
F(y) = F(). But since 7 has F'-like support we can write j = dyA(u) for some

ue F’. But then

, it is clear that we can confine x to F’. Thus
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A& _ sl Aw ™
A(x)y4® A(x)4®

and as we have argued before, 4(u)*®/A(x)*™ achieves its maximum uniquely
at x = u. Hence F(§) = 6, but by Lemma 20, E()) = E(y).

LEMMA 22. Let yeRy, y # 0, and suppose {y,a) = 2\_, ya;, «€G, has a
critical point. Then this critical point is a minimum, and y has F-like support
for some flat F. If y is indecomposable, the critical point is unique.

Let ae G be a critical point, let y be arbitrary in G, and put z = ya. Then
{z,¥') has a vanishing derivative at t = 0. Thus

d n
dt<2s7'>(t = 0) = E zilogYi = 0.
i=1

Sincelog y runs precisely through the orthogonal complement of the set of points
A(e), ee &, we must have z = X, _,.n4(e). Let n = Xn,. If n # 0, we may
write z = nA(x) for some xe K. If n > 0, then since ze R}, xe K, and z and y
have same support as A(x). .

Suppose # < 0. Then A4;(x)£0, 1<i<n Let uekK, t=0. Then
A1+ Hu — tx) = (1 + DA;,(u) — tA(x) = 0, implying u + t(u — x)e K for all
t = 0. Since K is compact we must have u = x, whence 4,(x) = 0,50 z =y =0,
contradicting our original hypothesis.

Supose n=0. z= XnA(e) = Xn,A(e) + A(0) — A(0) = A(x) — A(0) for
some xe A. And A;(x) — A,(0) = 0. Again let ue K. Then A u + tx) = A,(u)
+ t(A,(x) — A(0)) = 0, implying u + txe K for all t, which implies x = 0.
Hence z = A(x) — A(0) = 0 = y, again contradicting our original hypothesis.

So we must have z = yA(x), x€K, n >0, and so y = na”'A(x). By
Theorem 18, we know that min, . ¢{y,y> = dn. But also {y,a) = dn, showing
the critical point is a minimum. The uniqueness of the critical point in case y is
indecomposable follows from Theorem 17.

THEOREM 23. LetT = {yeR3|y5,¥2 2 > 0;  Verts Ver2s'*» Vu = O}
Then E restricted to T is a real analytic function. Q never vanishes or vanishes
identically on T. If Q £ 0, define for each ye T, F, F' and § as in Lemma 20,
and write § = 8yA(x). Then y;(0E[dy;) = Oforj =s + 1,---,r; and y(0E[0y))
= (0/d)A[x) forj = 1,2,-+,s. In case Q = 0 on T, then E = 0 on T, and so all
derivatives exist and are zero.

The final assertion of the theorem is obvious, as is the statement about the
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vanishing of Q on T. So we confine our attention to the case @ 0 on T. We know
then that E(y)* = Q(y)/P(I(q(»))). As y ranges over T, g(y) which is real analytic
ranges over points in K all belonging to the interior of the same flat. Hence
I(g(»)) is real analytic. Since P(l(g(y))) is uniformly bounded away from zero,
and Q(y) is different from zero, E(y) is real analytic.

It is possible now to compute the derivatives of E directly from the definition,
but it is easier to proceed as follows. By virtue of Theorem 19 and Lemma 20,
itis clear that E does not depend on the (s + 1)st to the rth coordinate, 0E/dy; = 0
forj=s+1,5+2,--, r.Also (0E/(0y;)(y) = (CE[dy)(}) for j = 1,2,--,s.

For notational convenience, we denote 0E/dy; by E;, and we extend the de-
finition of E(y) by setting it equal to zero for j = s+ 1, s +2,---, n. Since E is
homogeneous of degree one, X, y;E(y) = E(y). Since for any pe G, E(py)
= E(y), we have p,E(py) = E,(y). Also for any scalar ¢, E(p'y) = E(y), from
which we obtain, on differentiating with respect to ¢ and setting t = 0, that
2o viE(logp; = 0. As in the proof of Lemma 22, the above implies that
y:E(y) = X.n.4,(¢). Summing on i, we obtain E(y) =dn, n= X,1,, and
n > 0. Since E(y) is a monotone non-decreasing function of each argument,
y:E{(y) = 0. Referring again to the proof of Lemma 22, we obtain that yE(y)
= nA(x) for some x € K, indeed for some x & F’.

Now letve F’, wbe any point in F”, and ¢ be small. Then E(A(v + t(v—w))) = 1.
Differentiating with respect to ¢t and then setting t = 0, we obtain X_; E(A(v))
[4i(w) — 4(®)] = 0 or X}_; E(A(v))4(w) = E(A(v)) = 1.

We know from just above that A(v)E(A(v)) = (1/d)A(z) for some zeF'.
Hence X2, (4,(2)/4;(v)A(w) = d for any we F' from which we obtain
Z3=1 [(4i(2) — A(0)/4(0)]4i(w) = O which gives X%, [(4i(z) — 4(0))*/A(v)]
= 0, implying v = z. Thus E(A(v)) = 1/d fori = 1,2,---,s.

Now write J = dyA(x). Since E; is homogeneous of degree 0, and since p,E(py)
= E;(y) for any p € G, we obtain

W EGAR) = 237 = EG) = EO)

for 1 £ i < s, which completes the proof.

It is worth remarking now that if we know E in the neighborhood of a point y,
we can compute immediately the decomposition of § in form dyA(x).

It is also worth interpreting the above for the space D, of k x k doubly sto-
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chastic matrices sitting in the affine space R*". One finds readily that the group
G consists of matrices whose i, jth entry is Au; subject to IT; 4; = ITju; = 1.
Hence E(y) = (1/k)min,,, X y;;A;u; subject to above constraints.

It is possible to obtain a simple direct proof of the D;AD, theorem just by
considering the critical points of the above variational problem.

THEOREM 24. Let M and m be upper and lower bounds for P(x). Then for
any y € Ry, ME'(y) 2 0(y) = mE“(y).

If Q(y) = 0, the statement is clear. Otherwise let y and j be as in Lemma 20,
and write 7 = dyA(x). Then Q(¥) = Q(P) = 6°Q(A(x)) = E*(y)P(x), and we are
done.

If Q(y) is homogeneous of degree d < 1, then it is easy to see that Q(y) is a
concave function, since each of the summands is, so the minimum of P(x) is
attained at an extreme point of K. This simple observation leads to our next
result.

THEOREM 25. Let A = min, . sc(e)A(e) *®), and assume d > 1. Then for
all xe K, P(x) = Ad[n)* L.

First we note for any y € K that by our remarks above Q(4'%(y))is a concave
function on K, so QA(*4(»)) = A.

Next, let x be arbitrary in K, and write A%(x) = dyA(y), d > 0, yeG, yeK, so
that A(x) = §'/414414(y). Also 8 = E(A%(x)), and P(x) = Q(A(x)) = 6Q(AY4(y))
= AE(A%(x)). Let I be the point in R} with all coordinates equal to one. Then by
Theorem 21,

1 = E(A(x)) = E(A)]) £ EY%(A(x)) - E“= D),

so E(4%x)) = 1/E*-Y(I). But E(I) = (I/d)min, . X7,
> Mdfn)*-1.

COROLLARY 26. If x € D,, then Perm(x) = 1/k*~1.

< n/d. Hence P(x)

COROLLARY 27. Suppose it is known that A(x) has at least r (r < n) com~
ponents zero. Then P(x) = A(d/(n — r))*~1.

For the proof, replace I in the argument above by the point I’ which has zero
components matching those of A(x), components one elsewhere. Then E(I’)
=< (n — r)/d, and the proof is completed as before.

A simple combinatorial argument which we now present gives a result in some
respects better than Corollary 26. Fix an integer 0 < p < n and let V be the
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collection of points in R} which have p coordinates equal to one, the remainder
being zero.

LeMMA 28. Let x = (x4,%3,'',Xx,)€R{ and let n = X]_{x;. In order for
X to be written as a linear combination with non-negative coefficients of elements
of V, it is necessary and sufficient that for all 1 £v < n, px, < 1.

The necessity of the condition is obvious. The proof of the sufficiency is by
induction on s = n — p. Let us first note that the condition is sufficient in case
s = 0, since the collection of inequalities nx, < # implies ny = X;nx, < ny,
and since we have equality, we must always have nx, = 7, that is, all coordinates
of x are equal.

Let x be a point in R and p < n. If any coordinate of x is zero, we can discard
it, and we are reduced to a value of s less by one, and the result is true.
Suppose that r,0 < r £ p, of the inequalities px, < n are equalities, say px; = 1,
pxy=n,-,px, =n.If r = p, thenn = X?_, x; = n, and since we have equality,
it must be that x,,, = x,,, = - = x, = 0, and we are again reduced to an

earlier case, so the result is true.
We now describe a procedure which reduces a given case to one where some

component of x is zero, or increases by one the number of inequalities which are
equalities, which enables us to complete the inductive proof.

So we suppose no coordinate of x is zero, that px, = 1, px, = n,:-, px, = 1,
0<r<p and px,<n, v=r+1,r+2,.,n Put a=min[x,x,,,xp,
(n = pxp4+1)/P, (n ~ PXp42)/p, -, (1 — px,)[pland y = (x; —a,x; ~a, -, X, — @,
Xp+15Xp42, 7, %,). Then ye Ry and x = aw + y for ve V. The sum of the co-
ordinates of y is # — pa, and it is easy to verify that py, < n — pa for all v, and
pyvi=n—pafori=12--,r.Ifa=x;forsomel<Li<p,then y,=0.1If
o = (n — px)/p for some p + 1 £ i £ n then py; = # — pa. So either y has a
zero coordinate or r + 1 of the inequalities for y are equalities.

THEOREM 29. Let x € D, and let r be an integer < k***V, Then the sum of
the r largest terms in the expression for Perm(x) is = r/k*, with equality if and
only if x is the doubly stochastic matrix f having all entries equal.

First note that x* has a minimum of 1/k* achieved uniquely at x = f. Let
x = X' p.m,. Suppose for all 1 < i < k! that rp; < 1. Let p be the vector
with ith coordinate p,. By the last lemma, we may write p = (1/r) £ ,4,h,, where
each A, is a vector with r entries equal to one, remaining entries zero, v being an

1
integer in range 1 < v < (kr'). Also g, 2 0 and X g, = 1. Putting back in the
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expression for x the expressions so obtained for the p;, we achieve a representation
x = (1/r) Xq,8,, where each 6, is a sum of r distinct permutation matrices.

Then x* = IT x*%/" > 1/k*. If we always have x®/" < 1/k* then we must
have x*/" = 1/k¥ so x * = 1/k* and x = f. Otherwise, we have, say, x*/ > 1/k*,
and 0, = n; + n, + - + =, from which it follows by the inequality of arithmetic
and geometric mean that (1/r) X7_, x™ > 1/k*.

The remaining alternative is that for some i, rp; > 1. But then already
x™ > 1/r® = r/k* completing the proof.

There is an interesting complement to the last result. Let I be a set of k per-
mutation matrices, each of degree k. We say they are independent if the square
matrix X, .7 has every entry one.

THEOREM 30. LetI be an independent set and x € D,. Then if x # f,x" < 1/k;
for some wel.

We may write x = X, _;A(n)o n, where iA(n) are diagonal matrices, and
Mr)o mis matrix multiplication. It is easy to see that E(A(r)om) = [IT )2, A(m)]**
= x" We have 1 =E(x)= X, EAn)on) = X, x7* If for some nel,
x"* > 1/k, then for some other n'el, x*/* < 1/k. Otherwise we have for all
mel, x™* = 1/k. But then 1 = E(x) = (1/k) X, ;x; = 1/K) Z;; X, o1 M7,
=X, E(n)on) = 1. So we must have for any mel that (1/k) ZXi(n)
= [I%., 4(n)] " implying that A(n) = 1/k, implying that x = f.

We return once more to the general case, and want to give a duality result,
which can possibly be used to improve Theorem 25. For anye € &, we define the
semigroup S(e) = {ye Rg|y 4= 1} and the semigroup G(e) = {y e Ry[y* =1}
If g € G, then g G(e) = G(e). Note that S(e) is a convex set, and that if y € Rj, then
Min ¢ gy <Y, 8Y = d(y*©")A(ey®?). Let £ ' be the convex set consisting of all
le R} which may be written [ = X, s c(e)A(e)*"s(e) with s(e) € S(e), and &
the set which may be written as above but with s(e) € G(e). Note that if e Z’,
then [eR’ .

THEOREM 31. Let m = min, g P(x), and suppose d > 1. Then

1 1
1 max E¢-! (l_("‘l)) = maxQ"'l(l_(d*l)),
m le® leg

Also

m= min [A®Nig(x)d- DA/
xeKle?

From our remarks above, it is clear that Q(y) = (1/d) min, . o</, y*>. But also
then, O(y) = (1/d) min, . ¢ min, ¢ (lg,y*) = min, ¢ E(Iy*). Since d > 1,



Vol. 18, 1974 THE PERMANENT CONJECTURE 93
E(y) = E(I="41t14y) < E4=104(1-116=0) . EU(1y4),
Since E(A(x)) = 1 for x € K, we obtain
1
E(14%(x)) = gDy
Thus

1
max,, o E¢-1(I71/@-1)

P(x) = Q(4(x) 2

and so 1/m < max, o E¢-1(1-1/¢-D),
But from Theorem 24, we have E*(1~*/=1) < (1/m)Q(I=*/“="), and this, in
conjunction with the last inequality, yields

L < max @Q4-1(j-E-y
m leg

Repeating the argument used above, Q(I~Y“-1) = min,. o, E(I'I-%¥-1)
< E(I"Y@-Y) on taking the particular case I’ = I. So E!(I-VE-D)
< (/m)Q~Y4-Y) <1/m E(I" ¥~ 1), 50 1/m = max, . o E*~1 (1~ 1/@-V), Hence
1/m = max; g E-1(J-1@-D) and also 1/m = max;. ¢ Q?~ (I~ Y¥-1), since
Q(l—l/(d—l)) < E(l"”(d'l)).

The last equality of the theorem is obtained by noting that from Theorem 21,

l—A(x)/(d-l) 1/d4
E(I-Y¢-Yy = max [_——] .
xek L A(x) 4(x)

Note that all the extrema above can be taken as well with [ belonging to the
convex set £,

Notice that 4 > ¢(e)A(e)*@, 50 that ™4 > 1 =min, _, c(e)A(e)*®4,
Hence m = A min g AX) @ VD4®  g§ince A(x)*™ is no less than (d/n)?
(achieved when all A(x) = d/n if such exists), the theorem above includes in-
cidentally Theorem 235.

If the minimum of Perm(x) for xe D, is achieved at x = f, then Holder’s
inequality shows easily that min, ., Perm(x"), r = 1, is also achieved at x = f.

Our next result is a slight contribution in this direction.

THEOREM 32.  For every k there exists an r such that min, .p Perm(x") is

achieved uniquely at x = f.
Let N be any neighborhood of f in D,. If x € N¢ (complement of N in D,), then
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by Theorem 29 there exists an ¢ > 0, ¢ independent of x, and a = such that
x™ = 1/k* + &. For simplicity write Perm(x) = P(x). Thus, for all sufficiently
large r, P(x") = (1/k* + &)" = P(f") = k!/k". So by picking r sufficiently large,
we can guarantee that min, .p, P(x") is achieved at a point of N.

Construct the map x — h(x), h(x) = (1/P(x)) Zx™r as in the text following
Lemma 10, with inverse map x — I(x). The critical points of P(x") are to be
found among the solutions of h(x") = x. For any y e Rg having F-like support
for some flat F, we may write y = 0yA(x), 6 > 0,ye G, xe F. Define [y] = A(x).
With this notation, the critical points of P(x") are to be found among the solutions
of x = [I'"(x)]. Now we need two lemmas.

LemMA 33. Let xeD, and ¢ > 0. Suppose for every permutation matrix
7, x"* 2 1/k(1 + €). Then for all i,j, | x; — 1/k| < ke.
Let ¥ be the convex set of x € D, for which x;; = a. Let A be the set of per-

“k Fisaconcave

mutation matrices x for which z(1) = 1. Define F(x) = min,_, x
function on D, or V. If # and p € A, note that F(ro x 0 p) = F(x). And if xeV,
no x o pe V. Hence, by averaging, we see that the maximum of F on V is attained

at a point x, for which mo x40 p = x4, whenever 7, pe A. So x, must be

l1—-a 1—a
a k-1 k-1
1—a k4+a-2 ic+a—2
k-1 (k-1)7? (k—1)?
1—a k+a-2 k+a-2
k-1 (k—1)? (k —1)?

and F(x) £ a'™[(k + a — 2)/(k — D?]*" V% If now x satisfies the inequalities of
the lemma, then

1 <¢“k+a—1W““<1a k—1k+a-2
k(1+¢) = [w—nz =k k  (k—1)?

and thus gives immediately a = 1/k — &. The last inequality holds for any element
x;; in x. Since the row sums of x are one, we also obtain

1—xﬁg(k—n(%—ﬁ
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or
x-~<L+(k-—l)8<—1—+k£
iy = k S k

completing proof of the lemma.

LemMA 34, There exists a constant « < 1/2k such that if xeD, and
|x,-j— 1/k| S e 2 a foralli,j, then Ilij(x) - 1/k| Se

Let u be a matrix with row and column sums zero, ¢ a real variable. The Taylor
series for h(f + tu) starts as

h(f +1t,) =f+tE%u+-~

So the Taylor series for I(f + tu) has the form

z(f+t,,)=f+:k‘1

U+

For t = 1, the series converges for all sufficiently small u, and the lemma is clear.

Now we complete the proof of Theorem 32. Pick r so large that min, _p, P(x) is
achieved at a point x belonging to N = {x | Ix,- ;= 1/k| < a}, with « of Lemma 34,
and also demand r = 8k2.

Let x € N, and suppose Ixij - 1/k| <& £ a, for alli,j. Then |lij(x) - 1/k| Ze,
so for any permutations 7 and p, I™4I?* < (1 + ke)/(1 — ke) S 1 + 4ke. Put
y = [I*(x)]. Then y™yolt= [*kypolr < (1 4 ake)tl = (1 + 4ke)*'r - 1771
= (/)1 + 4ke) + (r — 1)[r = (1 + (4k[r)e). Since there exists a permutation p
such that y”= 1/k* we obtain for all 7, y™* > 1/k(1 +(4k/r)e). Then by Lemma 33,
| vij — 1/k| < (4k?/r)e, and since we have selected r > 8k2, we have

1
lyij - l/kl § 58.
If now x is a fixed point of map x — [1'”(x)], then x; ; — 1/k is arbitrarily small;

that is, x =f, and we are done.
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